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The complete symmetrization with respect to x, Px, �9 �9 �9 of the operators associ- 
ated with dynamical properties can sometimes lead to results different from 
those obtained by the conventional quantum formalism based on the rule 
op (A 2) = (op A) 2. For example, angular momentum operators M2z and M s 
are modified by the additive constants h2/2 and 3h2/2 respectively ( M 2 ~  0 
for electron in the ground state of  H atom, rotator never at rest, but spectra 
unchanged);  the average quadratic dispersion of energy is different from zero. 
These results can be interpreted by assuming that the system is never strictly 
isolated but communicates with the other systems of the universe by means 
of electromagnetic interactions. Quantum mechanics would give only average 
values over a sufficiently long time and would exhibit a quasi-ergodic character. 
Examples supporting this possibility are given, in particular that of  arsines 
for which quantum forecasts correspond to average values over one year. 
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Introduction 

Constructed initially to account for experimental observations, quantum 
mechanics has become a formalism whose physical meaning is sometimes difficult 
to discern. The basic idea on which quantum mechanics is built is that, to any 
classical dynamical property G(p, q), there corresponds a linear operator G such 

* Dedicated to Professor J. Kouteck~ on the occasion of his 65th birthday 
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that the result of the measurement of G belongs to the spectrum of  (~. Since the 
results of  physical measurements are real, G must be self-adjoint. This condition 
is often replaced by the weaker condition that (~ must be Hermitian, which is 
sufficient to ensure that the average value of  the observable is real. 

The problem of the construction of  the operators certainly remains a difficult 
fundamental question in quantum mechanics. The elementary rule given in most 
quantum mechanics textbooks, namely that the operators G are obtained directly 
from the corresponding classical expressions G(p,  q) by replacing the components 
p,(u =x, y, z) of  the momentum of  each particle in the expression of G by the 
corresponding operators h / i  O/Ou, i.e. 

G ( u , p , ) = G  u, i 

is not sufficient. Indeed, in general, the operators thus obtained are not even 
Hermitian owing to the fact that a and/~, do not commute. 

In 1927 SchriSdinger [1] proposed to replace qp2 by qpp+ppq, pqp or (qpp+pqp+ 
ppq)/3 before building the corresponding operator. Subsequently, various sol- 
utions have been proposed for q~pm, always based on a preliminary more or less 
complete symmetrization of the classical expression with respect to the cartesian 
variables q and p [2-7]. For instance, p2q2 is replaced by (p2q2+ q2p2)/2 or after 
complete symmetrization [6] by 

( qqpp + qppq + ppqq + qpqp + pqpq + pqqp ) / 6. (2) 

In fact, such quantities qnpm appear in expressions arising from the square of 
dynamical properties G 2 so to ensure the self-adjointness condition it has been 
customary to put 

op (G 2) = ( 6 )  2. (3) 

More generally, for the product AB of two dynamical properties, conventional 
quantum mechanics utilizes the following rule 

op (AB) = (A/3 +/~,4)/2. (4) 

Unfortunately, this manner of  proceeding leads to the following unacceptable 
consequence known asTem~le 's  paradox [8]: according to (4), three operators, 
((,3,/~)~), ((,~(~)/~), ((BC)A) correspond to the product of three properties A, 
B, C. These operators are different unless the operators A,/~, C commute, i.e., 
h = 0. The complete symmetrization with respect to q and p as in (2) removes 
the p ~ a d o x ,  as then only one operator, indeed, corresponds to ABC, even if 
A, B, C do not commute. This is, of course, logically more satisfying. It may 
therefore be useful to examine the consequences of such a symmetrization in a 
detailed manner with the object of seeing whether its consequences are acceptable 
or are inconsistent with experiment. That is the aim of this paper. 
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Operators associated with M= = and M z 

The operators associated with M 2 and with 

M 2 M2~+ 2" 2 = M y + M z  (5) 

can be constructed according to two completely different procedures. If  we adopt 
(3), we must write 

op (M 2 ) = (]~/x) 2 + (h~/y) 2 + (]~?/z) 2 = ~l~ 2. (6) 

On the contrary, if we start from the classical expression, after complete sym- 
metrization (sym), we obtain [9] 

2 (/~,/~)2 + h2 (7) 
op ( M z ) s y m  = 2 

and 

op (M2)sym : (a~1x)2-1-(~ly)2"l-(l~z)2"~32 h2 = ~2q--32h2.  (8 )  

The operators (7) and (8) are self-adjoint, and their eigenfunctions are the same 
as those of (h~/z) 2 and ~ 2  respectively. These operators commute with ]~/z and 
with the Hamiltonian /4 in the case of atoms (the spin-orbit interaction being 
neglected) so that all the results concerning the classification of the atomic levels 
are unchanged. The only difference concerns the value of M 2. For instance, for 
the ground state of the hydrogen atom, M 2 is equal to -32h2 while the conventional 
quantum formalism gives zero. Intuitively, the value ~h a seems to be more rational 
than the conventional value given the motion of the electron. In this connection, 
it is interesting to recall that, to remove this difficulty, Dirac [10] proposed 
~0~2+ h2/4 for the operator associated with M 2. 

Another consequence of the complete symmetrization is that, even in th"e case 
where ~/, is eigenfunction of Mz and 2~/2, the values of Mz and M 2 are not 
constant: e.g. 

h 2 
(AMz) 2 = - - .  (9) 

2 

Consequently, for the plane rotator, we obtain 

7rh 
(AMz)(A~p) = ~ :  0.72 h. (10) 

In the conventional formalism, the Heisenberg relationship 

(A Mz)(Aq~) -- h/2 (11) 

fails to be true [11] given AMz = 0. Again the complete symmetrization appears 
to be more satisfactory than the orthodox formalism. 

Moreover, the plane rotator is never at rest. The corresponding zeropoint rota- 
tional energy is equal to h2/4I, all the levels being shifted by this same additive 
quantity, so that its spectrum is unchanged. Likewise for an unsymmetrical 
top, the corresponding shift is (1~Ix + I / I v  + 1/Iz)h2/4 (Ix, Iv, Iz = principal 
moments of inertia). 
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Operator associated with E z 

The square of  the energy appears  when one considers the quadratic dispersion 
of the energy (AE) 2. I f  we adopt  the conventional formalism from (3) we have 

op (E 2) = (/~)2 (12) 

so that (ZXE) 2 is equal to zero for all the eigenstates. I f  however we start from 
the completely symmetrized expression for E 2 w e  obtain a dispersion different 
from zero. The case of  the harmonic oscillator is typical in this regard [7]. From 
(2b) we obtain 

op (/~2)sy m = (/_~)2q_ k h2 (13) 
4m 

(m being the mass of  the oscillator, and k its force constant) so 

(AE)2 = k h 2 # 0 .  (14) 
4m 

More generally, for a particle whose potential energy is U, we obtain [9] 

h 2 
(A/~)2 =~--~(~t �9 V 2 U  �9 //t). (15) 

Consequently, it follows from the previous equations that the energy does not 
remain constant, but fluctuates as a function of time about the corresponding 
eigenvalue of/-1. This outcome is inconsistent with the hypothesis that the system 
is isolated. It corresponds to a coupled subsystem. 

In fact, the true problem is to know what meaning must be given to the label 
"isolated".  The theory of measurement  affords an example which clearly shows 
the complexity of  this notion. According to the orthodox interpretation, during 
a measurement,  the system interacts with the measurement apparatus. Thus the 
system is not strictly isolated and its energy fluctuates when it is in presence of 
a device. Therefore, it is not unreasonable to take into account a continuing 
interaction between the system and its surrounding. 

The first idea which comes to mind concerning the nature of  this interaction, is 
that it is electromagnetic in origin. As far back as 1924, Slater [12] wrote "Any 
atom may, in fact, be supposed to communicate with other atoms, by means of 
a virtual radiation field". The first attempt at an explicit calculation seems to 
have been the Stochastic Electrodynamics (SED) [13]. This theory assumes that 
the electrons ate subjected, on the one hand, to the Lorentz damping force, and, 
on the other (to compensate for the loss of  energy), to a random electromagnetic 
field which fills the whole universe. Within this model energy fluctuates. The 
results obtained from SED for the harmonic oscillator are in complete agreement 
with the quantum results. However  SED results are inconsistent with quantum 
results for other systems [14]. 

SED does not make the origin of  the background field precise [ 13]. Nonetheless, 
it is reasonable to imagine that this field arises from the radiation of  all the 
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systems which constitute the universe [15]. Such a hypothesis has to be compared 
with the Wheeler -Feynman absorber theory [16]. However, the introduction of 
the half-retarded and half-advanced fields of  the latter theory into the framework 
of SED makes the energy dispersion vanish for stationary states [17]. 

Up to now, the idea of the balance between the radiated and absorbed powers 
for an "isolated" system immersed within the field created by the other systems 
of the universe, has not been formulated in a satisfying manner  by any classical 
theory. Although the idea is exciting, the mathematical  difficulties are presently 
too great for definitive conclusions to be obtained. 

A compatibility condition between classical and quantum physics 

A measurement  is never instantaneous so that its result is the average value, over 
the time of the measurement,  of  the property being observed. Consequently, the 
result can depend on the duration of the observation. The example of Newton's  
disk is typical in this regard. It appears to us as white and at rest if the rotation 
is sufficiently rapid (say 50 Hz), whereas a photo using a very brief t ime-exposure 
(0.001 s) distinctly shows the various colored sectors and successive photos allow 
us to detect the rotation. 

I f  the electron remains a particle in the hydrogen atom, given that its average 
kinetic energy is different from zero, we must admit that it is moving and that, 
if no experiment is able to detect its motion, we are in a case comparable with 
the visual observation of Newton's  disk. In other words, since quantum mechanics 
agrees with experiment, its forecasts would correspond to a time-average over a 
sufficiently long observation time. The stability of the results versus time would 
signify that the underlying dynamics exhibits an ergodic (more precisely quasi- 
ergodic) character [18]. Let re be the ergodicity time, i.e. the minimum time 
necessary to obtain stable time-average values, and rm, the duration of the 
measurement.  Then the system exhibits the quantum character only if rm >> re. 

As a first example, let us consider the H~ ion. At the elementary LCAO-MO 
level, the molecule possesses two electronic states respectively symmetric, tPs, 
and antisymmetric, qJA- The oscillation period T of a wave-packet between the 
two nuclei is equal to h/E*,  E* being the transition energy between Os and q'A 
[19]. In SO far as T can be used as an order of magnitude for re, we obtain the 
following results. At the equilibrium distance, (Ro ~ 2 a.u.), ~'e ~ 10 16 S; for R = 
40 a.u., re ~ 1 s, and for R = 60 a.u., re - 5 years. In other words, the notion of 
molecule would be vanishingly small for large internuclear distances. This would 
be very satisfying for the chemist. The fact that re for electrons in molecules 
( ~ 1 0  16 S) is 10 4 times smaller than the one for molecular vibration (~10 -12 s) 
gives a physical meaning to the Born-Oppenheimer  approximation.  The quantum 
electron density is reached much more quickly than the density corresponding 
to the vibrations. 

The pyramidal  molecules MXYZ afford another typical example. These com- 
pounds exist in two inverse forms of opposite handedness which are able to 
change into one another more or less quickly. Theoretically, the problem is that 
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of a particle within a symmetrical double-well potential. The quantum ground 
state corresponds to a symmetrical density with two maxima localized above the 
two wells respectively. Such a state does not exhibit any optical activity. The two 
inverse forms (D and L) which the chemist would expect to find appear to have 
no physical existence [20]. Experiment shows that amines (M = nitrogen) do not 
exhibit rotatory power and are not able to be resolved into D and L isomers. 
Phosphines (M =phosphorus)  and arsines (M = arsenic), however, are resolv- 
able. In addition if we start from a certain quantity of  a given isomer (e.g. D),  
the substance progressively raeemizes (i.e. is changed into a mixture containing 
equal amounts of the D and L forms), thus becomes optically inactive. One 
month is necessary for obtaining this transformation for phosphines, and one 
year for arsines [21]. This means that, if we were able to observe one molecule 
and to draw the histogram of its properties, the quantum distribution would be 
reached only after a sufficiently long time. For amines, ~'e - -  10-12 S and for arsines 
~-e -- 1 year. This is a proof  of  the physical reality of the two enantiomeric forms 
although they are unobservable in the case of amines. In amino acids, the 
racemization time is 105 years and this phenomenon is used in paleontology for 
absolute dating of fossil bones [22]. The reversible interconversion D~--L can be 
explained in a classical way by the more or less easy jump over the potential 
barrier between the two wells. The fluctuations in energy allow the system to 
acquire sufficient energy to pass over the barrier without us being constrained to 
admit the tunneling effect. 

Other examples of systems for which the ratio re/r , ,  is important can be quoted. 
The instantaneous picture obtained from absorption spectra of transition metal 
compounds differs strongly from the pictures obtained from techniques with a 
larger characteristic time-scale (e.g. X-ray crystallography) [23]. Similarly, elec- 
tron diffraction indicates that the octofluorocyclobutane C 4 F  s exhibits the sym- 
metry Vd (with all angles equal to 109.5 ~ and the cycle folded along one of the 
two diagonals (4 equivalent structures are possible)), while infra-red spectroscopy 
suggests this molecule is planar (D4h) with all the angles being equal to 90 ~ [24]. 
The cycle oscillates from one Vd structure to another passing through the O4h 
planar form. The maximum quantum density corresponds to the Vd structures 
which appear in an electron diffraction experiment whose duration is extremely 
long with respect to the oscillation period. The infra-red spectrum is a faster time 
scale measurement and, consequently, the lines corresponding to the D4h structure 
appear. 

A difficulty, nevertheless, remains concerning the absorption spectra. Quantum 
mechanics forecasts spectra made up of infinitely sharp lines whose frequencies 
are determined by the differences between the corresponding eigenvalues of H. 
This seems to be incompatible with a dispersion in energy for the eigenstates. In 
fact, the absorption lines exhibit a finite breath showing that the problem is more 
complex. The absorption could be an extremely sharp resonance without connec- 
tion to the dispersion in energy. Besides, SED offers an example (namely that 
of  the harmonic oscillator) where the spectrum is discrete while the energy 
fluctuates [13]. 
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A possible molecular test 

Since the consequences we have drawn so far from the complete symmetrization 
procedure concern only the interpretation of the quantum formalism, it may seem 
that the problem is purely academic. However, with the accuracy of present day 
experimental methods and theoretical ab-initio methods, it may be possible to 
find the answer to this question through the examination of molecular properties 
which depend on a possible zero-point contribution of the rotational energy. 

For instance, according to Eq. (8), the zero-point energy of a diatomic molecule 
is equal to 

eo = h 2 / 4 I  = h2/atzR~ (16) 

/x being the reduced nuclear mass and Re the equilibrium internuclear distance. 
As examples, one finds eo = 3.5 meV for / /2  and 0.02 meV for O2 at their respective 
equilibrium distances [25]. For the separated atoms (R = oo), eo = 0, so that the 
dissociation energy Do should be correspondingly decreased by Co. Since ~o= 
D - D o ,  where D is the vibro-electronic and Do the experimental dissociation 
energy, a test of  the value of eo requires very accurate experimental measurements 
of  Do and very accurate ab-initio calculations of  D. The latter are within reach 
for small molecules. The former are more delicate since the determination of 
dissociation energies is based on the extrapolation of the vibrational energy levels 
with respect to anharmonicities and rotation-vibrational interactions. This 
extrapolation procedure would also have to be modified to account for eo 
decreasing with higher vibrational excitations. Nonetheless, in principle the 
possibility for future tests exists. 

Conclusion 

We can summarize the consequences of complete symmetrization of operators 
with respect to the position coordinates x, y, z, and the corresponding momenta  
Px, Py, Pz, as follows: 

(i) A certain number  of  logical difficulties are removed including Temple 's  
paradox and the Heisenberg uncertainty relationship for the rotator. 

(ii) Although the physical outcomes which arise from the symmetrization are 
different from those which are conventionally admitted, they are not inconsistent 
with experiment and are in some sense more rational. For examples, M 2 r  0 in 
H ( l s ) ,  and similar to an oscillator, a rotator is never at rest. 

(iii) The fluctuations for all dynamical properties, which are the most important 
consequence of the symmetrization, may lead to a quasi-ergodic interpretation 
of quantum mechanics, the (classical or quantum) behavior of  the system depend- 
ing on the value of the ratio %~/~'e. The system is not strictly isolated but exchanges 
energy with all the systems which constitute the universe. 

(iv) High accuracy experiments and ab-initio calculations in the field of  chemical 
physics may provide a resolution to the symmetrization question which had been 
left unsettled since the 1930s. 
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